A Class of Quadratic Programs with Linear Complementarity Constraints
نویسندگان
چکیده
We consider a class of quadratic programs with linear complementarity constraints (QPLCC) which belong to mathematical programs with equilibrium constraints (MPEC). We investigate various stationary conditions and present new and strong necessary and sufficient conditions for global and local optimality. Furthermore, we propose a Newton-like method to find an M-stationary point in finite steps without MEPC linear independence constraint qualification.
منابع مشابه
Solving Linear Programs with Complementarity Constraints using Branch-and-Cut
A linear program with linear complementarity constraints (LPCC) requires the minimization of a linear objective over a set of linear constraints together with additional linear complementarity constraints. This class has emerged as a modeling paradigm for a broad collection of problems, including bilevel programs, Stackelberg games, inverse quadratic programs, and problems involving equilibrium...
متن کاملJ . Wright ? On Reduced Convex QP Formulations ofMonotone
Techniques for transforming convex quadratic programs (QPs) into monotone linear complementarity problems (LCPs) and vice versa are well known. We describe a class of LCPs for which a reduced QP formulation|one that has fewer constraints than the \stan-dard" QP formulation|is available. We mention several instances of this class, including the known case in which the coeecient matrix in the LCP...
متن کاملOn Reduced Convex QP Formulations of Monotone LCP Problems
Techniques for transforming convex quadratic programs (QPs) into monotone linear complementarity problems (LCPs) and vice versa are well known. We describe a class of LCPs for which a reduced QP formulation|one that has fewer constraints than the \stan-dard" QP formulation|is available. We mention several instances of this class, including the known case in which the coeecient matrix in the LCP...
متن کاملOn Reduced Convex QP Formulations of
Techniques for transforming convex quadratic programs (QPs) into monotone linear complementarity problems (LCPs) and vice versa are well known. We describe a class of LCPs for which a reduced QP formulation|one that has fewer constraints than the \standard" QP formulation|is available. We mention several instances of this class, including the known case in which the coe cient matrix in the LCP ...
متن کاملOn reduced convex QP formulations of monotone LCPs
Techniques for transforming convex quadratic programs (QPs) into monotone linear complementarity problems (LCPs) and vice versa are well known. We describe a class of LCPs for which a reduced QP formulation|one that has fewer constraints than the \stan-dard" QP formulation|is available. We mention several instances of this class, including the known case in which the coeecient matrix in the LCP...
متن کامل